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Abstract

This work discusses the effects of periodic forcing on attracting cycles and more complicated attractors for autonomous
systems of nonlinear difference equations. Results indicate that an attractor for a periodically forced dynamical system may
inherit structure from an attractor of the autonomous (unforced) system and also from the periodicity of the forcing. In particular,
a method is presented which shows that if the amplitude of the k-periodic forcing is small enough then the attractor for the forced
system is the union of k homeomorphic  subsets. Examples from population biology and genetics indicate that each subset is also
horneomorphic to the attractor of the original autonomous dynamical system. 0 2001 Elsevier Science B.V. All rights reserved.

PACS:  89,60.+x;  02.40.Vh

K~JMw&: Periodic forcing; Attractors; Discrete population models

1. Introduction

The effects  of  periodic variat ions in system inputs and parameters on the behavior of  both continuous and discrete
dynamical  systems have been widely studied since the work of Cartwright  and Lit t lewood [I  ] in 1945 on the forced
van der Pol equation. During the last 2.5 years, Cushing [2,3], Mackey  and Glass [4],  Inoue and Kamifukumoto 151,
Schaffer [6],  Kot et al. [7],  Rinaldi et al. [S],  Buchanan and Selgrade 191,  Costantino et al. [IO], King and Schaffer
[ 1  11,  Henson  [ 121, Henson  et al. [ 131  and others have investigated new behaviors that  result  when periodic forcing
is  introduced into biological  models .  Periodic f luctuat ions may occur in parameters  intr insic to an ecosystem such
as intraspecific and interspecific interaction parameters or birth,  growth and death rates.  On the other hand, periodic
variations may also appear in extrinsic parameters such as stocking and harvesting or migration effects. In both
instances,  these periodic changes may be due to environmental  factors such as seasons,  cl imate and food supply or
due to the seasonal  nature of  s tocking and harvest ing.

Periodic forcing has been used to control chaotic behavior. GiiCmez and Matias  1141 illustrated how a state-
dependent  s tocking or  harvest ing may be used to produce stable periodic osci l lat ion in populat ion size for  models
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with logistic and exponential maps, which produce chaotic regimes without forcing. In their examples, the period
of the resulting attracting cycle was a multiple of the period of the forcing. Alternatively, Ott et al. [I 51  controlled
chaos by periodically perturbing intrinsic system parameters. Both approaches were discussed in SolC et al. [ 161,
who also considered the complicat ion of  noise in the system.

In laboratory experiments,  Jillson  [ 171  effectively forced a flour  beetle (TViholicrm)  populat ion by al ternat ing food
supply between high and low amounts in a 2-periodic fashion. He noticed that beetle population size cycled with
period 2 and that the average population size was greater than the size attained by a population given a constant
amount of food equal to the average of the 2-periodic food amounts. Henson  and Cushing [181,  Costantino et al.
[ 101  and Henson  et al. [ 191  explained this phenomenon both mathematically and biologically by showing that two
different 2-cycles occurred in the population sizes. One cycle (referred to as resonant) had an average population
size larger  than the populat ion given a constant  food supply,  corresponding to Ji l lson’s observations,  while the other
cycle (called uttenunnt)  had a smaller average population size.  Both 2-cycles  were observed in controlled laboratory
experiments. Recently, Henson  et al. [ 131  have illustrated the simultaneous occurrence of locally stable 4-cycles in
beet le  populat ions and invest igated the dual  role  of  determinism and stochast ici ty in asymptot ic  approach to these
cycles. From a mathematical point of view, the 2-cycles and 4-cycles  are attractors in a discrete, nonautonomous
dynamical  system.

Here,  we study small  ampli tude periodic forcing of discrete dynamical  systems.  We show that  the at tractor for a
periodically forced system inherits structure from the attractor of the original autonomous dynamical system and
also from the periodicity of the forcing. Because the forcing is periodic, we view the nonautonomous system as a
composition of a finite number of autonomous maps which allows us to study how attractors of the autonomous
system are changed by small amplitude forcing. Using this approach, we extend the work of Henson  [ 121  which
described how small amplitude forcing affects attracting periodic orbits of the autonomous system. Henson  1121
showed that  i f  the forcing is  k-periodic then a hyperbolic at tract ing f ixed point  of  the autonomous system continues
to an attracting k-cycle of the nonautonomous system and, furthermore, if m divides k then a hyperbolic attracting
m-cycle for the autonomous system produces m  attracting k-cycles for the nonautonomous system. If  the attractor for
the autonomous system is  more complicated than a cycle,  we conjecture that  the nonautonomous at tractor  consists
of k subsets  each homeomorphic to the autonomous at tractor .  Although,  we do not  establ ish this  r igorously,  we do
prove that sequences of k maps which define the nonautonomous system are local ly conjugate i f  the autonomous
map is a diffeomorphism in a neighborhood of the attractor of the autonomous system. Thus, we show that the
attractor  for  the nonautonomous system is  the union of  k homeomorphic subsets .  Jn  the examples we present,  these
subsets  are also al l  homeomorphic to the at t ractor  of  the autonomous system.

Section 2 introduces a model  from populat ion genetics which motivates our s tudy.  Section 3 discusses the general
framework of our approach and examples of the continuation and bifurcation of attracting periodic orbits under
k-periodic forcing.  Section 4 presents a method for studying the continuation of more general  at tractors.  This method
is applied to a prey-predator system in Section 5, where the attractor for the autonomous system is an invariant
loop. We prove that the autonomous map is a diffeomorphism in a neighborhood of this loop and show that its
continuation under small amplitude 2-periodic forcing is the union of two homeomorphic loops which are mapped
back and forth by the nonautonomous system. Section 6 discusses an example of  5periodic  forcing in a  populat ion
interaction model,  where the at tractor is  the union of f ive loops.

2. An example of 2-periodic forcing from population genetics

In order to motivate our discussion of how periodic forcing affects the structure of a nonperiodic attractor of an
autonomous system, we introduce a model from ecological genetics that accounts for the effects of selection and



migration on the al lele frequency and the populat ion densi ty of  a  s ingle populat ion (see [20,2 I]). Let x denote popu-
lat ion s ize or  densi ty  of  a  diploid populat ion with two al le les ,  A and n,  at  an autosomal locus and let  p  denote the fre-
quency of the A allele prior to selection, where 0 5 p 5 1.  Hence,  the populat ion consists  of  individuals  having one of
the three genotypes,  AA, Au,  or un.  The genotypes have nonnegative per capita growth rate functions (fi tnesses),  ,f;?h,
,&,, and &,,  which represent the pressures of natural selection and which are decreasing functions of X.  Allele fit-
nesses  fX  and f;,  are definedby ,f~  = I$~A+( 1 --/?)jfqr,  and f(,  E &:\(,+(  1 -~))j&. A ccordingly,  the populat ion mean
fitness f‘ is given by f = I&A  + (1 - ~)j;,.  Assuming random mating, the following system of difference equations
describes the changes in allele frequency and population size that take place from generation n  - 1 to generation n
for n  = 1,2.  .  ,

pt/-l  .fAb-I  > XJ,-I)
pi7  =

fh-I  > X,1-l) ’
x,1  =-~,,.-If(P,I-1,X,,-I). (2.1)

This model is  of “gene-pool” type (see 1221) and does not  contain the detai ls  associated with specific,  real ist ic  pop-
ulations.  However,  the value of such models has been aptly summarized by Crow 1221, who states “The gene-pool
model is a wonderful, simplifying convention. . . Often it is such a simplified view that provides the most useful
insights  into evolut ionary processes.”

To include immigration, let a number of individuals proportional to x migrate into this population from a nearby
population or collection of populations in each generation. We study immigration of period 2 by taking this con-
stant of proportionality to be given by h(  1 + (w(- 1 )‘I),  where h  > 0, 0 5 (Y < 1,  and n  is a positive integer.
When II is even, the immigration term is h(1  + w)x and, when II is odd, the immigration term is h(1  - a)~.
Thus arh  measures the variation in migration from an average rate of h.  Following immigration, random mat-
ing is assumed to take place yielding Hardy-Weinberg proportions in the population of zygotes that form the
next generation. In the population of migrants, let the allele frequency for A be constant and given by q,  where
0 < 4 < 1. Then counting alleles and numbers of individuals, Roberds et al. [20,21] obtained the following
system:

PJ?  =
h-I.fA +@(I +a(-I)“:),

.f +h(l  +a(-1)“)
x,7 = x,,-l[f + h(1  + cr(-l)“)].

The dynamical behavior of (2.2) is determined by repeated composition of two maps corresponding to even and
odd values of II.

Fix the allele frequency in the immigrating population at q = 0.95 and consider exponential allele fitnesses of
the form

fAA(.Y)  = e
I -0. IS.1 f&,(.x) = eO.s-r &,(x) =: e3-0.31-, (2.3)

The mrr  genotype’s fitness is large when x is small and decreases rapidly as x increases. This produces unstable
equilibria for small p and h  and w = 0, see 1201. In fact, without immigration (h = 0), the line {p = 0) is
invariant and the dynamical behavior of (2.1) on this line is given by iterating a one-hump map which is chaotic
on an attracting interval. If immigration is introduced (h > 0), the line (p = 0) loses its invariance, and the
attractor bifurcates into the region where 17 > 0 and forms a fish-hook (see Fig. 1 ) by spreading apart the fold
which occurs at the maximum of the one-hump map. This fish-hook is a chaotic attractor and is the unstable
manifold of the saddle point (!T,  x.) M  (0.029. 9.907). indicated by a  in Fig. 1. The existence of the fish-hook
indicates that immigration is a source of genetic variation, i.e., in this case dynamical behavior on an attractor
where both alleles are present and where the allele frequency and population density vary in an apparently random
fashion.
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Fig. 1. Fish-hook attractor for (2.2) and (2.3) with k = 0.012 and a = 0.

When (;Y  > 0, the 2-periodic forcing results in an attractor which is the union of two fish-hooks, see Fig. 2, which
are mapped back and forth sequentially. Even iterates map one fish-hook to itself and odd iterates map the other
fish-hook to itself. Except for the tip of its spike, the fish-hook formed by odd iterates is narrower and lies inside
the fish-hook formed by even i terates.  The spike of the odd fish-hook extends above the spike of the even fish-hook.
When c~  > 0, the even and odd fish-hooks appear homeomorphic  to each other and to the fish-hook attractor when
cy  = 0. Careful comparison of Figs. 1 and 2 indicates that the even fish-hook is a bit broader and the odd fish-hook
a bit narrower than the fish-hook when (Y = 0.

20

Fig. 2. Double iish-hook attractor for  (2.2) with h = 0.012 and a =  0.2.



3. General framework

The nonautonomous system of difference equations may be writ ten as

z,~ = f(cr,  z,~-I, n) for n  = 1,2,. .  , (3.1)

where z,!  E R’, f : IR  x IR’  x Z + IF&,  and (Y  is a parameter which measures the amplitude of the periodic forcing.
Since time-dependence occurs only in the forcing term, when u = 0, we define the time-independent map from
R’ to R’ by F(L)  = ,f(O,  z, n). For example, inserting (II  = 0 in (2.2), we obtain the autonomous system

p,,  _ PelfA  + qh
.f+h ’

x,,  = x-,,-lIf  + hl.

When the forcing has period 2,  the i terations of system (3.  I) are the repeated composit ions of precisely two maps,
Fl  and F2,  applied in order. The map Fl  : R’ + R’ is determined by odd values of n  and the map F2  : R’  --+  R’  is
determined by even values of YI. For the map in (2.2), the second component of Fl  is

x-,,-llf  + h(l - (~11,

and the second component of F2  i s

x,7--1  I.f + I?(1  + ol)l.

The forcing term osci l lates  with magnitude ah about an average of h.  Each map depends on the parameter u which
is indicated by the additional subscript (Y.  Hence, Fl,,(z)  = f (cu,  z, 2n - 1) and Fz,~(z) = f (a, z, 2n) for all n
and the even iterates of (3.1) are given by

z,,+?  = Fz,,(FI,,(z,,)) for n  = 0, 2,4, .  .

Notice that FI,,  = Fz,~  = F if 01 = 0.
In general,  when the forcing has period k,  the i terations of system (3.1) are the repeated composit ions of precisely

k  maps, FI,,, Fz.~, .  .  , Fk,cu,  applied in order. Clearly, F;,o  = F for i = 1,  2, . . , k. The trajectory of a point ~(1
under (3.1) is given by the n-fold composition of k maps, i.e.,

Zll =: . . . 0 Fz,c( 0  FI,, 0  F’.w 0  . 0  FL, 0  FI,,(zo).

Henson  1121 investigated how a hyperbolic fixed point or m-cycle for the autonomous system perturbs under
small amplitude, k-periodic forcing, using the implicit function theorem in a Hilbert space of periodic sequences.
Whencr=O,them-cycle{i(),?t,... , &,  - t }  being hyperbolic means that  the derivative of the m-fold composi t ion
of F at & has no eigenvalue on the unit circle and, hence, the derivative of the m-fold composition of F at each Z;,
i =o,  I , . . . , m - 1,  has no eigenvalue on the unit  circle.  Henson  [ 121  showed that  i f  m divides  k then a hyperbolic,
attracting m-cycle for the autonomous system continues to m attracting k-cycles for the nonautonomous system.
These k-cycles may or may not  be dist inct .

By considering families of compositions, we extend Henson’s  analysis to other bifurcations and more general
attractors. For instance, when the forcing is k-periodic, consider the composition G, = Fx,~  o . . . o F2,w  o F,,,.
A fixed point of G, corresponds to a k-cycle of the nonautonomous system (3.1). When (Y = 0 and m divides
k, a hyperbolic m-cycle for the autonomous system produces rn  hyperbolic fixed points of GO. Since G, is a C’
perturbation of GO for  small  cy  r 0,  each of these f ixed points  continues to a hyperbolic f ixed point  of  G, and hence
produces a k-cycle of (3.1).  If  a more complicated attractor has a uniform hyperbolic structure (see [23, p. 2411)  then



i t  would be preserved by C’ perturbation.  However,  uniform hyperbolici ty is  very difficult  to verify for complicated
attractors and often at tractors appearing in biological  systems do not have such structure.  For example,  the f ish-hook
in Section 2 is not a normally contracting submanifold (see 123, p. 4441)  nor does it have a uniform hyperbolic
structure because of the contraction within the attractor near the spike. In the next section, we study properties of
the nonautonomous at t ractor  without  making such strong assumptions about  the autonomous at t ractor .

For (3.1) under 2-periodic forcing, the bifurcation from 2-cycle to 4-cycle as cz  varies corresponds to a period-
doubling (flip) bifurcation for G,. More generally, under k-periodic forcing, the bifurcation from k-cycle to 2k-cycle
corresponds to a period-doubling bifurcation for G,. Let (Z(),U,l, Z~,a,j,  . , Z~-~,cro}  be a k-cycle for (3.1) when
a  = ~0.  Hence fi.+-~,~,,(~~,iyi,)  = ?;+I.~,~ for i = 0, 1,  . , k - 2 and Fk,,,, (& I.,,) = Z(),U,j.  A period-doubling
bifurcation occurs at ac  = CYO  and L = ZO,~,, only if DG,,,  (to,,,,)  has an eigenvalue of - 1.  We compute that

DG,,,(io.,,,)  = DFL,,,(% I.,,,)DF~-I,,,,(Z/~-~.C~,,)  ~~~DFI.,,,(&~ (3.2)

Typically, when a period-doubling bifurcation occurs, a stable k-cycle loses stability and is replaced by a stable
2k-cycle.

For the “gene-pool” model introduced in Section 2,  we i l lustrate a cascade of period-doubling bifurcations as the
2-periodic forcing amplitude increases. When 01  = 0 and k = 0.09, system (2.2) exhibits a hyperbolic saddle point
at i = (0.0907, 9.6995) denoted by A in Fig. 3(a) and an attracting 2-cycle  given by

{&)  = (0.23235,5.155),  Zl = (0.0578, 13.826)},

and denoted by + in Fig. 3(a).
As cx  increases from 0, the hyperbolic saddle .?  is  replaced by a saddle 2-cycle  consis t ing of  the points  ( (0 .11176,

9.0176),  (0.08811, 10.5254)) for u = 0.1 and depicted by a  in Fig. 3(b). The attracting 2-cycle (&I, ii] is replaced
by two attracting 2-cycles. For cz  = 0.1, one 2-cycle is the set

{&.o.I,  FI.O.I  (ZO.O.I))  = {(0.23686,4.6977),  (0.05667, 14.2699)},

and represented by + in Fig. 3(b) and the other 2-cycle is the set

{ZI.O.I,  FI,o.I(ZI.O.I)}  = ((0.05785, 13.312),  (0.2222, 5.7092)),

denoted by x Note that the order of the points in these 2-cycles is important. For instance, the orbit of the second
point in the 2-cycle denoted by x, i.e., the orbit

((0.2222, 5.7092),  F1.0.1(0.2222,  5.7092),  F~,o.l(Fl,o,l(0.2222,  5.7092)),  . . ),

approaches the 2-cycle denoted by +.
At CY = 0.15, the 2-cycle represented by + undergoes a period-doubling bifurcation resulting in an attracting

4-cycle. This attracting it-cycle is denoted by + in Fig. 3(c) when (Y = 0.2. The attracting 2-cycle denoted by x in
Fig. 3(b) continues as an attractor when cy  = 0.2 and is denoted by x in Fig. 3(c). Also, the saddle 2-cycle persists
as a  in Fig. 3(c), but notice that the two points on its orbit have spread apart. In fact, when a x 0.228, the saddle
2-cycle  (A) and the attracting 2-cycle  (x) annihilate each other in a saddle-node bifurcation. When 01  z 0.333, the
attracting 4-cycle (+)  undergoes period-doubling resultin,0 in an attracting g-cycle  (+)  pictured in Fig. 3(d). As UI
continues to increase, a period-doubling cascade ensues resulting in an attractor when u = 0.5 consisting of two
connected components  pictured in Fig.  4.

This sequence of bifurcations illustrates how changes in the amplitude of the periodic immigration change the
character of the genetic variation exhibited by the model.  As the amplitude increases,  the bistable periodic behavior
in Fig. 3(b) is replaced by one attractor of higher period in FI,.  _‘0 3(d) and finally by a chaotic attractor in Fig. 4. This
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chaotic attractor inherits its two component nature from the period of the immigration but it is not homeomorphic
to the pair of fish-hooks in Fig. 2 which occurs at smaller immigration levels.

4. Continuation for more complicated attractors

Fig. 2 illustrates the continuation of a fish-hook, which is an attractor when (Y  = 0, under small amplitude forcing
of period 2.  The result ing at tractor  is  the union of  two f ish-hooks and the dynamical  system maps one f ish-hook to the
other sequential ly.  The f ish-hooks appear homeomorphic to one another and homeomorphic to the original  at tract ing
fish-hook when w = 0.  Below, we demonstrate a method which shows that  i f  the ampli tude of the k-periodic forcing
is  small  enough then the at t ractor  is  the union of  k homeomorphic  subsets .

For instance,  when the forcing has period 2,  orbits  may be decomposed into odd and even i terates,  see Fig.  2.  This
is accomplished by defining the two maps G i ,U  = Fz,~ o F1 ,(y  and Gz.~ F FI ,(y  o F?,@.  For n > I, the points G;,, (z(j)
are the even iterates of the orbit of z()  under (3. I) and the points G:’-.Ly (F1 .cy  (z(j)) are the odd iterates of the orbit of
~0. Clearly, F,,, o G,,, = Gz,~ o Ft.,  and I;,,, o G;‘,, = G;,, o Fl,, for all n  L. 1. FI,,  is called a semiconjugacy
and it takes orbits of G I,~  to orbits of Gz,~. Similarly, Fz.~  o Gz.~ = G I,~  o  Fz.~  and Fz,~  o Gz,, = G;,, o Fz,~, so
F?,@  is also a semiconjugacy. Since GI,, and Gx.~ are autonomous dynamical systems, the semiconjugacies FI ,(y
and Fz,, indicate that the dynamical behavior of each system is quite similar. For example, periodic orbits of G 1 ,cy
correspond to periodic orbits  of  Gz,~ and convergent orbits  of G I ,cy correspond to convergent orbits  of G2.01. If F1  ,u
has an inverse then Gz,, = Fl ,Ly o Gl( (y o F,-A and, hence, G 1 ,U and GT,~  are conjugate dynamical systems, i.e.,
their dynamical behavior is essentially’ the sa;ne  (see [23, p. 401).  For instance, if A, is an attractor for G, ,U  then
FI ,U  (A,) is an attractor for G2,u  which is homeomorphic to A,.

If cz is small then FE,,  is a C’ perturbation of F, the autonomous dynamical system for a = 0. If F is  a
diffeomorphism in a neighborhood of the at tractor A() then FI ,(y is  a  diffeomorphism in a  neighborhood of  A, because
of the openness of the set of C’ diffeomorphisms, e.g., see [ 24, p. 381.  Hence, G 1 ,w  and Gz,, are conjugate locally.
Fl,,(A,) is an attractor for Gx,~ homeomorphic to A, and A, U Fl ,(y  (A,) is an attractor for the nonautonomous
system (3.1) .  Notice that  this  process does not  prove that  A, i s  homeomorphic  to  A() because there is no conjugacy
for F. However, in our examples these attractors appear to be homeomorphic. For (2.2) when u = 0, the attractor
for the autonomous system is the fish-hook in Fig. 1. In Fig. 2, where cy  = 0.2, one fish-hook is an attractor for
G 1 ,Ly,  i.e., the even iterates of (2.2), and the other fish-hook is its image under FI ,a  and is an attractor for G2,@,  the
odd i terates of  (2.2) .  The union of  these two fish-hooks is  the at tractor  for  the nonautonomous system.

An example due to Henson  1121 shows that the sets A, and FI,~(A~)  may not be distinct. Consider the scalar
equation x,, = 0.5(1+ a(- l)‘I)x,,-  I for II > 1.  The map F(X) = 0.5x has an attracting fixed point at the origin and
is a diffeomorphism. Since G 1 ,cy  = G2,w  = 0.25(  1 - cu”)x,  the origin is the only attractor for the nonautonomous
map, i.e., A, = FI,,(&)  = 10).

In general, if the forcing has period k, for each i  = 1,  . , k, define the map G;,,  : R’ + R’ as the composition
of k maps in the appropriate order starting with F,,, which defines a solution orbit of (3. l), i.e.,

G;,,  ii F;-,,, o . . o Fk,, o . . . o F;~,,

where the term F;-I,~ is taken to be Fk,, when i  = 1. Clearly, F;,,  o G;,,  = G;+I,~  o F;,cy and F;.,  o G:l, =

G:‘+, (y  0 Fi,, for all II > 1. If F;,,  has an inverse then G{‘,_,  L y = F;,@  o G:IW  o F;ylf, i.e., G;,,  and G;+I.~ are
conjtigate  dynamical systems. As in the case when k = 2, F;,,  ’ will have a local inverse when cx  is small and when
the autonomous map F is  a  diffeomorphism in a neighborhood of an at tractor A().  In this case, the attractor for (3.1)
is  the  union of  k homeomorphic subsets and has the form

A, U F,.,(A,) U Fz.a(F,,,(&))  U..  . U  Fx-~,cu(.  . FIN  . . . I .



This argument  does not  show t h a t  A, i s  homeomorphic  to  A(). I t  is  more diff icul t  to  determine condit ions under which
an attractor continues to a homeomorphic attractor under C’ perturbat ion.  An assumption of  uniform hyperbolici ty
on A() would guarantee that A() continues to a homeomorphic attractor of G;,,. Hence, each subset of the attractor
for (3.1) would be homeomorphic to A() and this would be a direct extension of Henson’s  results [ 121. However,
our assumption that F is a local diffeomorphism is different and weaker than hyperbolicity and, hence, our result
is weaker.

5. A prey-predator example

In this  section,  we discuss a two-dimensional prey-predator system where the at tractor for the autonomous system
is an invariant loop which arises via Hopf bifurcation. We prove that the autonomous map F is a diffeomorphism
in a neighborhood of this  loop and,  hence prove that  for  small  ampli tude period 2 forcing the at tractor  is  the union
of two homeomorphic subsets  which are also loops.

Let x denote the prey population density and y,  the predator density. In order to simplify the transition map, we
assume that the per capita transition functions are linear functions of the population densities. Our model for the
interaction of these two populations has the form

x,1 = x,7-I (2 - x,7-1  - 0.5.Y,,-I), Yn  = Yn-I  (0.8 + %-I), (5.1)

where the parameter r denotes the conversion rate from prey to predator. Here the prey has logistic growth in the
absence of the predator with a stable equil ibrium at  x = 1. In the absence of prey, the predator population decreases
exponentially. If y > 4, then the model is unrealistic because the prey population becomes negative, so we restrict
our attention to small values for the population densities. The equilibrium (x,  y) = (0,O) is always a saddle point.
The equilibrium (x,  y) = (I, 0) is stable for small r, but undergoes a transcritical bifurcation as r increases through
0.2 which results in a stable interior equilibrium (x, y) = (0.2/r, (2r -0.4)/r) for r > 0.2. The interior equilibrium
loses stability via Hopf bifurcation as r increases through 1.2 and the resulting stable invariant curve (see Fig. 5)
persists until r becomes larger than 1.5.

The prey-predator system may experience periodic fluctuations in the parameter r or in any of the constants of
(5.1) due to environmental variations such as weather or seasonal changes. We incorporate variation of period 2
with  ampli tude 0.8~ in the intr insic predator  growth rate and consider  the nonautonomous system:

.X!?  = &-I(2  --X,1-l  -0.5y,,-I), YJ7  = Y,I-I  (OX1  + a(-1)‘7)  + 1.3X,7-l), (5.2)

wheren=1,2,..., and 01  > 0. Hence, the growth rate alternates between 0.8( 1 +(Y) and O.S(  1 - a) and averages
to 0.8 over two generat ions.  For small  (Y,  the at t ractor  for  (5.2)  wil l  be a  set  consist ing of  two subsets  homeomorphic
to each other (see Fig. 6) if the map of system (5.1) with r = 1.3 is a diffeomorphism in a neighborhood of the
attracting invariant curve depicted in Fig. 5.

Let F = (Ft , Fz)  denote the map of system (.5.1),  i.e.,

Fl  (x,  y) = x(2 - x - 0.5y), F~(x, y) = ~(0.8 + 1.3x). (5.3)

In this  sect ion,  we show that  F is  a  diffeomorphism in a  neighborhood of  the invariant  curve in Fig.  5  by studying
F defined on the open rectangle R = ((x,  y) : 0 < x < 0.5, 0 < y < 3). The derivative of F is given by the matrix

DF(x,  y) =
2 - 2x - 0.5y -0 .5x

1.3)) 10.8 + 1.3.X (5.4)



3

2 . 5

2

x I . 5

I

0 . 5

(‘,>,I 0 . 0 5 0.1 0.15 0 . 2 0.25 0.3 0.35 0.1 0.45 03

x

Fig. 5. Stable invariant cwve  and linear isoclines for (5.1) with I =  1.3

-3  -

1.5

2-

it 1.5 -

I -

()‘I-0 0.05 0. I 0.1s 0.2 0.25 0.3 0.3s 0.4 0.45 0,s

X

Fig. 6. Attractor Ihr system (5.2) with L Y  =  0.1



79

Fig. 7. Rectangle R and  parabola wlme  F may not be locally “l-l”.

By finding where the determinant of (5.4) is zero, we see that F may fail to be locally “l-l” only on the parabola
given by

y = 4+2.5x  - 6.5~'. (5.5)

As seen in Fig.  7,  this  parabola does not intersect  the rectangle R.
By studying the component functions in (5.3), it is easy to see that F takes the rectangle R into the rectangle

S = {(x, y)  : 0 ( x 5 0.75,O  5 4’ ( 4.35). Here, we show that for each point (a, h)  E S there is at most one point
(x,  y)  E R, so that F(x, y)  = (n,  b). Hence, F will be a “l-l” map on R. By setting Fl(x, y)  = b  and solving for
y in terms ofx and h, we see that

h
\T =i 0.8 + 1.3.X

(5.6)

Inserting the right-hand side of (5.6) into the expression F’l  (s, y)  = a, we obtain the following cubic equation for
x with coefficients depending on CI and h:

13.~’  - 18s’ + (1%  + 5h  - 16)x- + 80 = 0. (5.7)

A straightforward but tedious analysis of the cubic function on the left-hand side of (5.7) shows that  Eq. (5.7) has
at most one solution X,  so that 0 < x < 0.5. Hence, each point (n,  h) in the rectangle S has at most one preimage
(x,  J))  in the rectangle R under F. R is a neighborhood of the attracting curve in Fig. 5. The map F from R onto
F(R) is “l-l” with a smooth inverse. Thus for CI  small enough, the attractor for system (5.2) is the union of two
homeomorphic  subsets  as  depicted in  Fig.  6 .



X0 .I./?  Sclgrade,  J.H.  Roherd.v/Physicrr D 158  (2001) 69-82

6. A population model with period forcing

Consider  a  two-dimensional  system of difference equations that  models  the interact ion between a populat ion of  a
pioneer species with density x and a population of a clirnux species of density ~1. For ecological interactions of this
type,  competi t ive or  cooperative effects  impinging on each populat ion can be modeled as functions of  total  density
variables expressed as linear combinations of the individual population densities, see [25]. Total density variables
of this form, u  for pioneer populations and u  for climax populations, may be defined as

u  = Cl IX  + c12y, u  = C2I.x + c22y.

where the C;j  are posit ive constants that  reflect  competi t ive effects  for  a populat ion of type j  on a populat ion of type
i. If  the per  capita growth rates or  f i tnesses for  the populat ions are assumed to be smooth functions of  total  densi ty,
changes in population densit ies between generations can be represented by the following system of equations for
I7 > 1:

x,1 = x,1-1  .f(u), Y,7  = Y/l_-1g(v).

The function f indicates the f i tness function for  the pioneer populat ion and R, the f i tness  for  the cl imax populat ion.
In keeping with characteristic fitness profiles for pioneer and climax species (see 1251  or [26]), we may assume that
f is a monotone decreasing function of u,  whereas R is a one-humped function of v.

Fitness functions of various forms, including linear functions for pioneer populations and quadratic functions
for climax populations, have been used to study the dynamics of these systems (see [26]). In this example, we
illustrate the behavior produced by 5-periodic forcing on the pioneer population when pioneer f i tness is  l inear ( i .e . ,
f(u) = 2 - U)  and climax fitness is quadratic (i.e., g(v) = 4v  - u2  - 2). The system of difference equations
that  represents  changes in populat ion densi t ies  over t ime with stocking or  harvest ing of  period k (not necessarily
minimal period k) may be written as

X,I  =x/I-l
[
2-(~llx,,-,.(121-l)+h(lfuiin(~))l;

y17  =  Yn-l~4(~2l.LI  + cm,,-I)  - (01x,,-I  +  WY,,-I?  - 21, (6.1)

where cl, = 0.78, ~12  = ~21  = 1,  ~22  = 0.5, and n > 1. When u = 0 and h = 0.03, the attractor for the
autonomous system is an invariant loop. If k = 5 in (6.1) and c~  is increased through zero then the invariant loop
for the autonomous system (ac  = 0) splits into an attractor consisting of five loops (Fig. 8). The nonautonomous
dynamical system maps these loops sequentially, one to the next, in a period 5 fashion. It is not difficult to show
that when cx  = 0 the autonomous map F has a nonsingular derivative matrix in a neighborhood of the attracting
invariant loop. Hence, F has a local  inverse at  each point  along the loop, but we have not been able to prove that  F
i s  a  diffeomorphism in a  neighborhood of  this  loop.

7. Summary

Here,  we discuss the effects of small  amplitude periodic forcing on an attractor for a discrete,  autonomous system.
The resulting attractor for the nonautonomous system inherits structure from the original attractor and from the
period of the forcing. If the forcing is k-periodic then we extend the work of Henson  [ 121  for attracting cycles of
the autonomous system to more complicated attractors. Henson  [ 121 showed that if m divides k then a hyperbolic
attracting m-cycle for the autonomous system produces m attracting k-cycles for the nonautonomous system.
From the dynamical behavior of various population models, we observe that a more complicated attractor of the
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autonomous system continues to be a  nonautonomous at t ractor  which is  the union of  k subsets  each homeomorphic
to the autonomous attractor. Although, we do not establish this rigorously, we describe a method which may
be used to prove that the attractor for the nonautonomous system is the union of k homeomorphic subsets. Our
approach is to view the nonautonomous system as a composition of a finite number of autonomous maps. If the
original autonomous map is a diffeomorphism in a neighborhood of the autonomous attractor then we show that
sequences of k maps which define the nonautonomous system are locally conjugate.  The conjugacies provide the
homeomorphisms between attractor subsets. In Section 5, details needed to prove that the autonomous map is a
diffeomorphism are carried out for a prey-predator model.

If the attractor for the autonomous system has additional structure which persists under Cl perturbation then
it  may be possible  to prove that  each subset  of  the nonautonomous at t ractor  is  homeomorphic to the autonomous
attractor. For example, the autonomous attractor may be a normally contracting submanifold (see [23,  p. 4441).
However,  such properties are quite restrictive and are usually difficult  to verify.
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